Теплообменное оборудование

23:05, 25 Фев, 2019
Татьяна Сергеева

Теплообменное оборудование – это набор различных устройств и агрегатов, осуществляющих или способствующих передаче тепла от горячего теплоносителя холодному.

Теплоноситель – это среда, обладающая определенным объемом тепла. Ей могут быть: вода, антифриз, нефть, кислоты, газы и многие другие виды веществ.

Показатели работы теплообменного аппарата

К теплообменному оборудованию можно отнести насосы, насосные станции, приборы автоматики, запорную арматуру и, кончено же, теплообменники.

Главное условие применения любого оборудования – высокая продуктивность. У теплообменного аппарата этот показатель зависит от ряда критериев:

  1. Коэффициент теплопередачи определяется агрегатным состоянием вещества, конструкцией и материалом теплообменника.
  2. Площадь теплообмена: чем больше поверхность соприкосновения рабочей среды с греющим элементом, тем большее количество энергии сможет принять теплопотребитель.
  3. Разность температур – движущая сила процесса.

На эффективность работы прибора большое значение оказывает способ передачи энергии: теплопередача, конвекция или излучение. Один аппарат может сочетать в себе все три типа в разных частях устройства.

Классификация промышленных теплообменных аппаратов

Современные установки можно классифицировать по разным критериям: по принципу работы, внутренней конструкции, виду теплоносителей, их взаимодействию.

Современные производители предлагают теплообменники, которые позволяют осуществлять следующие виды процессов:

  • нагревание;
  • конденсация;
  • охлаждение;
  • плавление;
  • дистилляция;
  • затвердевание;
  • выпаривание;
  • кристаллизация.

В зависимости от потенциала теплоносителя можно выделить виды теплообменного оборудования:

  1. Низкотемпературные аппараты.
  2. Высокотемпературные аппараты, функционирующие при температуре 400-2000 °С: промышленные печи.
  3. Среднетемпературные аппараты, функционирующие при температуре 150-700 °С: устройства для сушки различных изделий, утилизации тепла, обработки предметов.

По принципу действия различают:

  1. Рекуперативные аппараты – приборы, в которых передача энергии осуществляется через перегородку. Пример: паровой котел.
  2. Регенеративные аппараты – установка, в которой один и тот же элемент поочередно омывается холодной и горячей средой. Пример: воздухонагреватель доменной печи, регенератор стеклоплавильной и мартеновской установки.
  3. Смесительные аппараты – устройство предлагает непосредственный контакт и смешивание двух или более рабочих сред для осуществления теплообменного процесса. Пример: скруббер, градирни – башенные охладители.

Первые две разновидности теплообменников называются поверхностными. Обязательное условие для передачи энергии в таких устройствах – промежуточный элемент в виде поверхности твердого тела.

По направлению движения типы теплообменного оборудования классифицируют на:

  1. Прямоточные модели: горячая и холодная среда двигаются в одном направлении вдоль функционального элемента.
  2. Противоточные модели: встречное движение веществ.
  3. Перекрестноточные модели: перекрёстное направление потоков.

Грамотный выбор рабочей среды и типа теплообменного устройства – залог высокой производительности технологического процесса.

Рекуперативные аппараты

Рекуперативные теплообменники – устройства, работающие в непрерывном или циклическом режиме. Прибор периодического действия – это объемный сосуд, который поочередно через одинаковые периоды времени заполняется горячей и холодной рабочей средой.

Наиболее популярен прибор со стационарным режимом. Известный пример – кожухотрубный теплообменник.

Кожухотрубный теплообменник

Кожухотрубный аппарат состоит из скрепленных пучков труб. Межтрубная и трубная зона внутри теплообменника такого типа разделена на несколько ходов перегородками. Отличительные особенности:

  1. Диаметр трубы – 12-38 мм. Это оптимальный размер для сохранения компактности устройства и хороших значений металлоемкости.
  2. Длина пучка труб – 0,9-6 м.
  3. Толщина стенки – 0,5-2,5 мм.

Фиксация труб осуществляется решетками с помощью сальникового соединения, запайки или развальцовки. Кожух аппарата имеет цилиндрическую форму и состоит из сваренных листов стали. Толщина стенки зависит от особенностей технологического процесса и максимального давления рабочей среды, но не может быть меньше 4 мм. Разная температура кожуха и трубы вызывает напряжение, для компенсации которого используют линзовые компенсаторы и трубы U- и W-образной формы, плавающие камеры.

Многоходовые трубы и межтрубное пространство позволяют увеличить скорость движения жидкости и интенсифицировать теплообмен для рабочей среды с низким показателем теплоотдачи.

Секционные теплообменники

Секционная конструкция востребована в разных отраслях промышленности. Отличительные особенности прибора:

  • небольшое различие скоростей циркуляции жидкости в трубном и межтрубном пространстве;
  • удобная регулировка и изменение площади нагрева;
  • конструкция оснащена большим объемом дорогостоящих деталей: переходные камеры, фланцы, трубные решетки, компенсаторы;
  • на перемещение рабочих сред требуется много электроэнергии.

Пример секционного аппарата – установка «труба в трубе», популярная в химической, нефтяной и газовой сферах.

Спиральные теплообменники

Спиральные аппараты – конструкция, в которой каналы для циркуляции рабочей среды образованы свернутыми в спираль листами. Для фиксации расстояния применяют штифты или приваренные бобышки. Оптимальный материал для намотки спирали – легированная и углеродистая сталь, алюминий, никель, титан.

Секционные приборы можно объединять в блоки. Они применяются для охлаждения и нагрева растворов и жидкостей, конденсации чистого пара из смеси.

Пластинчатые теплообменники

Пластинчатые устройства оснащены пластинами, которые объединены в пачку. Для увеличения рабочей площади практикуют разные профили элементов, включают в конструкцию профилированные вставки.

Наиболее подходящим материалом для изготовления пластин является сплав листовой стали с титаном, алюминием, мельхиором.

Характеристики конструкции:

  • толщина пластины 0,5-2 мм;
  • поверхность теплообмена одного элемента 0,15-1,4 м2;
  • размер щелевидного канала 2-5 мм.

Нагревающий агент циркулирует в межканальном пространстве, внутри каналов – рабочая среда, которая поглощает аккумулированное в пластинах тепло.

Пластинчатые устройства можно разделить на два вида: неразборные и разборные. Второй тип подразумевает использование эластичных прокладок для создания герметичности конструкции. Они более востребованы из-за возможности произвести механическую и химическую промывку с обеих сторон. Разборный теплообменник выдерживает давление до 2,5 МПа, температуру – до +150 °С. Паяная конструкция способна функционировать при давлении рабочей среды – до 3 МПа и температуре – до +400 °С.

Основная сфера применения пластинчатых теплообменников: нагревание и охлаждение жидких растворов, монтаж греющих камер выпарных приборов, выделение из смеси чистого пара.

Ребристые теплообменники

Ребристые теплообменники – теплообменное оборудование, применяемое в условиях, когда коэффициенты теплоотдачи циркулирующих сред значительно отличаются друг от друга. Поверхность элемента со стороны теплоносителя с низкой теплоотдачей увеличивают за счет ребристой поверхности.

Для изготовления труб с наружным и внутренним оребрением применяют литье, сварку, вытяжку из сплава, выдавливание горячего металла через матрицу. Эффективность ребер возрастает, если элементы выполнены из теплопроводных материалов – алюминия, латуни или меди. В зависимости от исполнения труб максимальная рабочая температура варьирует от +120 до +330 °С.

Регенеративные теплообменники

Регенеративные аппараты целесообразно применять в технологических процессах, характеризуемых сильными температурными скачками. Конструкция оборудования предполагает передачу тепла от одной среды к другой посредством насадки – теплоаккумулирующей массы. Циклы работы аппарата включает в себя следующие процессы:

  • поступление горячего теплоносителя;
  • аккумулирование тепла в насадке;
  • поступление холодного теплоносителя;
  • нагревание рабочей среды за счет накопленной в насадке энергии.

Продолжительность одного цикла — от нескольких минут до нескольких часов.

Непрерывный процесс теплообмена возможен при наличии двух регенераторов: когда в одном из них происходит аккумулирование энергии, в другом осуществляется нагрев холодного теплоносителя. После автоматического переключения регенераторов процесс в каждом отсеке сменяется противоположным.

Смесительные теплообменники

Смесительные аппараты – приборы, обмен энергией в которых происходит при непосредственном взаимодействии и смешивании двух или более рабочих сред.

Эффективность работы контактного теплообменного оборудования напрямую зависит от площади соприкосновения теплоносителей. Один из практикуемых способов увеличения производительности – разделение жидкости на капли и мелкие струи, газа – на пузырьки. Отличительная особенность оборудования – обмен энергией происходит кондуктивным способом и путем обмена массой.

Сфера применения: охлаждение газообразных веществ водой, конденсация пара, мокрая очистка газов.

Преимущества и недостатки разных видов теплообменных аппаратов

Особенности конструкции, использование определенного типа материала и теплоносителя накладывают на оборудование определенные ограничения, приводят к недостаткам и достоинствам.

Кожухотрубный теплообменник:

  • широкий рабочий диапазон давления и температуры;
  • высокая устойчивость к гидроударам;
  • низкие требования к чистоте раствора;
  • простая конструкция.
  • низкий коэффициент передачи энергии;
  • температурная деформация.

Пластинчатый теплообменник:

  • компактность;
  • нет потребности в сильной температурной разнице между рабочими средами;
  • медленное образование солей и иных загрязнений;
  • простой ремонт.
  • высокая себестоимость;
  • необходимость обучения персонала для работы на приборах;
  • высокая стоимость обслуживающего оборудования.

Витой теплообменник:

  • эксплуатация при высокой температуре и давлении;
  • устойчивость к деформациям.
  • малая теплоотдача.

Спиральный теплообменник:

  • компактные размеры;
  • высокая продуктивность;
  • малое гидравлическое сопротивление.
  • серьезные ограничения по рабочему давлению;
  • высокая стоимость ремонта и сложное изготовление оборудования.

Выбрать один лучший теплообменный аппарат и оборудование невозможно. В разных производственных процессах и условиях для высокой производительности имеют значение разные показатели. Определение оптимальной модели должно осуществляться с учетом технологии изготовления, ожидаемых функций и иных параметров установки.

Поэтому при подборе теплообменного оборудования всегда лучше обращаться к профессионалам.

Поделитесь этой новостью
Комментарии (0)

Ваш адрес email не будет опубликован. Обязательные поля помечены *